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1. INTRODUCTION 
 
Finding first integrals (invariants) plays a great role in modern systems and control theory 
e.g. in the field of canonical representations, controllability and observability analysis 
(Isidori, 1995) and stabilization of nonlinear systems (van der Schaft, 2000). If the given 
dynamical system is not integrable, then its first integrals (if they exist) give us very useful 
information about the properties of the solutions and about possibly physically meaningful 
conserved quantities.   
 
The class of quasi-polynomial (QP) systems has gained a significant interest in the modelling 
of nonlinear dynamical systems since the majority of smooth nonlinear systems occurring in 
practice can be algorithmically transformed to QP form (Hernández-Bermejo, et al., 1998). 
The theoretical background of the existence of quasi-polynomial invariants is well-founded: 
In (Figuerido, et al., 1998) algebraic tools are applied to find semi-invariants and invariants 
in quasi-polynomial systems. A computer-algebraic software package called QPSI has also 
been implemented for the determination of quasi-polynomial invariants and the 
corresponding model parameter relations (Rocha Filho, et al., 1999).  
 
The purpose of this paper is to propose an algorithm for the retrieval of a frequent class of 
quasi-polynomial invariants, which is also effective in the case of high dimensional QP-ODE 
models with arbitrary number of monomials. The paper is organized as follows. Section 2 
contains the basic notions that are needed to derive the main results. The main contribution of 
the paper can be found in Section 3 where the algorithm for the retrieval of invariants is 
described. Section 4 demonstrates the operation of the algorithm on the state space model of a 
fed-batch fermentation process. 
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2. PRELIMINARIES 
 
2.1 Quasi-polynomial systems 
 
Let us denote the element of an arbitrary matrix W with row index i and column index j by 

. Furthermore, let the i-th row and j-th column of W denoted by  and  
respectively. Quasi-polynomial systems are systems of ODEs. An (n+1) dimensional QP-
ODE system can be represented in the following general form: 
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The product terms  are called the quasi-monomials (or monomials) of the 

system. Without the loss of generality we can assume that 
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( ) 1,   1rank B n m n= + ≥ + , and the 
coefficient matrix A  is of full rank (Hernández-Bermejo, et al., 1998). By introducing the 
unit monomial , the above general form can be written in a homogeneous (i.e. without 
linear terms) form as 
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2.2 The examined class of invariants 
 
A function  is called an invariant of (1) if 1: nI +\ 6\
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We consider quasi-polynomial invariants in (1) that can be written in the following special 
form: 
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It's clear that (4) can be rewritten as 
 

 
1

0 0( ) ,   ix F x c cβ = + ∈\  (6) 
 
This is a narrower class of invariants than the one examined in (Figuerido, et al., 1998) since 
it contains those first integrals from where at least one of the variables can be expressed 
explicitly. However, many types of first integrals (e.g. conserved mechanical, 
thermodynamical or electrical energy) in physical system models belong to this class. 
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2.3 The underlying principle of the algorithm 
 
Consider a set of (n+1) differential equations in the homogeneous form of (2). Let us assume 
without restriction of generality that i=n+1 in (6) (because the QP form of the equations is 
preserved under permutation of the differential variables) i.e. the following algebraic 
dependence is present in (2): 
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where ,  ,  0cβ β∈ ≠A \ . It is clear that (7) is equivalent with the existence of a first integral 
of the form (4)-(5). Taking the time derivative of (7) and arranging it to the standard QP form 
gives 
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It is easy to see that the monomials in (9)  (denoted by jRA ) and their coefficients ( ) are  jcA
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where subscript i refers to that the partial differentiation in (9) has been performed by ix . 
 
Now, the aim of our algorithm is to determine β , the coefficients  and the exponents cA

,  1, , ,  1, ,i L i nα = … = …A A  in (7)-(8) using the special form of the monomials (10) and that of 
their coefficients (11). 
 
 
3. THE BASIC ALGORITHM FOR RETRIEVING INVARIANTS 
 
The input required by the algorithm consists of the matrices A and B of the QP model in its 
homogeneous form defined in (2). The operational condition of the algorithm is that, 
consistently to our preliminary assumptions, matrices A and B are of full rank. Without the 
loss of generality we can assume that the explicit variable of the possible first integral is the 
last differential variable 1nx + . By a simple permutation of variables, each variable can be 
checked whether it is the explicit variable of a first integral. 
 
Step 1. Determination of the monomial candidates 
To find a first integral in the form (7), one has to use the relationship (10) defined between 
the monomials  of the original differential equations and the monomials ,   1, ,jU j m= …

,  1, , ,  1, ,jR L j m= … = …A A  of the ODE for the algebraically dependent variable 1nx + . 
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The first step is dedicated to collect these two groups of monomials, and then to determine 
the monomial candidates of the first integral using (10). Since the exponents of the j-th 
monomial of a QP-ODE are given as the j-th row vector of matrix B, the first thing to do is to 
gather the exponents of those monomials that occur in the first n differential equations and 
construct the matrix ( )UB  from them. Let us denote the matrix created from A by deleting its 
(n+1)-th row by *A . Now construct ( )UB  in the following way:  
   
  Let ( )UB B=  
  Mark those rows ( )

,   1, ,U
jB B j m= = …i  for which *

 , 0jA =i      

  Delete the marked rows from ( )UB  
 
Collect the row vectors containing the exponents of monomials of the ODE for 1nx +  to ( )RB : 
  
  Let ( )RB B=  
  Mark those rows ( )

,    1, ,R
jB B j= = …i m  for that ( 1), 0n jA + =      

  Delete the marked rows from ( )RB  
 
As a result, ( 1) ( 1)( ) ( ),  U Rm n m nU RB B× + × +∈ ∈\ \ , where  and Um Rm  denote the number of 
monomials in the first n, and in the (n+1)-th differential equations, respectively. Note that 
there may be monomials (as row vectors) that appear in both ( )UB and ( )RB . 
 
As (10) shows, the exponents of the monomials ,   1, ,jU j m= …  in the original differential 
equations and of the monomials ,  1, ,V L= …A A  in the algebraic equation are added up in the 
resulted monomials jRA . This allows us to determine V  by simply dividing A jRA  by  for 
some j. This operation is equivalent with subtracting each exponent row vector corresponding 
to the monomials  (stored as row vectors of 

jU

jU ( )UB ) from the row vectors determining jRA  

(stored as row vectors of ( )RB ).  
 
Therefore the next step is that the algorithm determines the exponent row vectors by 
subtracting each row of ( )UB  from each row of ( )RB , and construct the matrix ( )VB  made of 
the resulted row vectors: 
 

  
( ) ( 1)( ) ( ) ( ) ( )
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Finally, make sure that each monomial candidate is coded only once in ( )VB : 
 
  Delete repeated rows from ( )VB  so that all rows are different 
 
As a result, ( 1)( ) Vm nVB × +∈\  contains all the monomial candidates of the first integral, where 

 denotes the number of these monomial candidates. However taking into account 
all possible monomial candidates may cause a huge redundancy but this guarantees that the 
exponent vectors of all monomials of the first integral are contained in

V Um m m≤ R

( )VB . 
 
Step 2. Determination of β  
To have a QP-type first integral from which 1nx +  can be given explicitly, the exponents of 

1nx +  in all of its monomials have to be identical. This step classifies the exponent row vectors 
of the monomial candidates of the first integral by their last element. 
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Compute how many different last elements of the row vectors of ( )VB  have and denote this 
number by S. Now make S different sets ,   1, ,k k SΩ = …  and collect all the row vectors of 

( )VB  having identical last elements into the same sets, while row vectors with different last 
elements into different sets. The result is a system of sets, where the elements of each set are 
exponent row vectors belonging to the same β . 
 
Now set the value of k to k=1. 
 
Step 3. Determination of the coefficients  
As the last step, search for a first integral with monomial candidates belonging to the same 

. Since the exponents of the monomial candidates are already given, only their 
coefficients have to be determined. If these coefficients exist, the first integral exists for the 
current

kΩ

β , and it is completely determined by the algorithm. Denote the number of elements 
of  by L. Then the first integral candidate is given by the monomials described by the 
elements of  with unknown coefficients 

kΩ

kΩ 1, , Lc c… . Perform time-differentiation by simply 
applying (9) to it, with monomials and coefficients described in (10) and (11), respectively. 
Then match the monomials of this time-derivative and the monomials of the (n+1)-th 
differential equation, and determine the coefficients ,  1, , ,  1, ,j L j mγ = … = …A A  therefrom. 
Then try to solve the linear set of equations (11) for 1, , Lc c… . 
 
Three cases are possible: 

• If (11) cannot be solved and k < S, increase k by one and jump to Step 3. 
• If (11) cannot be solved and k=S  the algorithm stops without finding a first integral. 
• If (11) can be solved, the invariant is successfully determined and the algorithm stops. 

 
 
4. EXAMPE: A FED-BATCH FERMENTATION PROCESS 
 
An isotherm fed-batch fermentation process with bi-linear reaction characteristics is used as a 
case study which can be described by the following homogeneous QP model: 
 
 ( )-1

1 1 1x x Fx=�   

 ( )-1 -1 -1
2 2 3 1 2 1- r Fx x K Y x S Fx x Fx= +� -    

 ( )-1
3 3 2 1-rx x K x Fx=�   

 
where 1,  2x x  and 3x  are the vessel volume, the mass of the substrate and of the biomass, 
respectively, and all other symbols are constant parameters. The matrices of the QP model are 
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0 0 1
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- 0 0

0 1 0

r F

r
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A F K Y S F B

F K

−⎡ ⎤
⎡ ⎤ ⎢ ⎥
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Step 1. The matrices ( )UB  and ( )RB  containing the exponent row vectors of the monomials 
respectively in the first two, and in the third differential equations are: 
 

 ( ) ( )
-1 0 0

0 1 0
 0 0 1  ,    

-1 0 0
-1 0 0

U RB B
⎡ ⎤

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
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Now subtract each row ( )UB from each row of ( )RB  to form ( ) 6 3VB ×∈\ . Since the last 
elements of the rows of ( )VB  should give 1 β− , these elements must be non-zero, meaning 
that four row vectors have to be cancelled from ( )VB  to get its final form: 
 

 ( ) 0 1 -1
-1 0 -1

VB ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
Step 2. Since the last components of both exponent vectors are identical, (both vectors belong 
to the same =1β ) there is only one set: [ ] [ ]{ }1 0 1 1 , 1 0 1Ω = − − − . 
 
Step 3. The parametric first integral is 
 
 1

3 1 1 2 2 0x c x c x c−= + +  
 
Its time-derivative does not provide solution for . However, this first integral can be re-
written in its implicit form, and its time-derivative gives the coefficients (except  which 
comes from the initial conditions of the model): 

1 2c , c

0c

 
 ( )1 3 21 F F 0x Y x x S S c− + =  
 
Note that another algorithm based on Lie-algebras has been applied to a fermenter model 
with the same structure but slightly different reaction kinetics in (Szederkényi, et al., 2002), 
giving the same final result. As a comparison, this new method provides a computationally 
more advantageous way of retrieval because it does not require the analytic solution of PDEs.  
 
5. CONCLUSIONS AND FUTURE WORK 
 
An algorithm is proposed in this paper for the determination of a class of first integrals in QP 
systems. This algorithm proved to be able to find QP type first integrals which are explicit in 
(at least) one of their variables moreover it operates without any heuristic steps. The 
operation of the algorithm was illustrated on a physical example. The results further support 
the fact that the QP representation of nonlinear systems can be very useful for the study of 
dynamical properties. Further work will be directed to the constructive application of the 
algorithm in control oriented nonlinear system analysis and feedback design. 
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